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Abstract - A diffusion cell has been constructed to measure the molecular diffusion coemcient of carbon 
monoxide in a carbon monoxide-nitrogen mixture through ciwette paper. The cell and its application are 
briefly described, and the mathematics pertaining to it is presented. The theory enables the required 

diffusion coefficient to be calculated from measurements of the exit mixing cup concentrations. 
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NOMENCLATURE 

airy functions of the first and second kinds 
respectively ; 
breadth of compartments and exposed paper; 
concentration of carbon monoxide; 
mixing-cup concentration; 
diffusion coefficient of carbon monoxide 
through nitrogen in the unrestricted gas phase; 
diffusion coefficient of carbon monoxide 
through nitrogen in the paper; 
depth of the compartments ; 
thickness of the paper; 
length of the exposed paper; 
eigenfunctions defined by quations (19)-(21); 
eigenconstants defined by quation (22); 
gas velocity in compartment ; 
volume flow rate in the compartments; 
Cartesian co-ordinates : 
dimensionless variable defined by equation (13). 

Greek symbols 

a=2eD LD, 
d a’~J,;‘:~a; 

dimensionless parameter ; 

gamma 
Fz rlyq; 

function ; 

1. dimensionless variable defined by equation (I 3) ; 
8, dimensionless variable defined by quation (13); 
4, eigenvalues defined by equations (19)-(21); 
P = P.. positive roots of p tan p = ol; 
x = p, (1 - 7). 

Subscripts 

P. 
1, 
2. 

cigarette paper ; 
upper compartment ; 
lower compartment. 

INTRODUCTION 

As SMOKE is drawn through a cigarette, the con- 
centration of carbon monoxide falls due to diffusion 
out of the cigarette and also due to dilution by air 
drawn in through the paper [l-lo]. In some cigarettes 
more than half the carbon monoxide formed in the 
burning zone can be lost by outward diffusion as the 

gases are drawn through the cigarette. The carbon 
monoxide escapes by a three-stage diffusion process: 
through the tobacco bed, then through the cigarette 
wrapper, and finally away from the outer surface of the 
paper. It is the first two of these phases that to a major 
extent limit the mass transfer rates [8]. 

Thus in studying mass transfer in cigarettes it is 
crucial to know the molecular diffusion coefficient in 
the cigarette wrapper. To this end, a diffusion cell has 
been constructed to measure the diffusion coefficient 
through the paper of carbon monoxide in a carbon 
monoxide-nitrogen mixture. It is the purpose of this 
paper to describe briefly the cell, its usage and the 
mathematical theory pertaining to it. 

DESCRIPTION OF CELL 

The arrangement of the cell, shown schematically in 
Fig. 1, consisted of two parallel compartments each of 
depth e separated by the paper of thickness L. The two 
halves of the cell, which were made of brass, were 
sealed by means of a rubber “0” ring. The paper was 
placed between the two sections and the whole unit 
was held together by clamps. For clarity, the rubber 
“0” ring and securing clamps are omitted from the 
diagram in Fig. 1. The depth of each half of the cell was 
altered by the insertion of a brass plate into the bottom 
of each compartment. In order to expose different 
lengths (M) of paper to the gas streams, identical cells 
of differing lengths were used. The breadth of the 
exposed paper (b), which was equal to the breadth of 
the compartments, was held fixed. 

The gases flowed into and out of the cell via 
funnelled tubes so that the flow over the exposed paper 
was well developed. The Reynolds number for flow 
through the cell, based on cell depth as the characteris- 
tic dimension of the cell, varied between 20 and 80 for 
the range of experimental conditions used. This is 
sufficiently small for the flow to be taken as laminar. 
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mportment of cell 

Differentiol monometer 

across A and B 

FIG. 1. Schematic arrangement and cross-section of the diffusion cell. 

A gaseous mixture of c”/, vol./vol. carbon monoxide 
in nitrogen (about 10% vol./vol., known accurately) 
flowed into one compartment of the cell, while nit- 
rogen flowed at the same rate into the other compart- 
ment. The steady state mixing-cup concentrations of 
carbon monoxide in the exit gases from each compart- 
ment of the cell were measured in turn with a Bosch 
infra-red analyser type EFAW 215. While the mixing- 
cup concentration in the exit gas from a given com- 
partment was being determined, the gas from the other 
compartment passed through a length of glass tube 
chosen so that its impedance to flow was equivalent to 
that of the infra-red analyser. A pressure transducer 
(Ether type UPl) placed across the diffusion cell 
confirmed that when the gases flowed with equal rates 
into the two halves of the cell, there was always zero 
pressure difference ( < 0.01 cm water) across the paper 
(1 cm water = 98 N m-‘). 

Gas flow rates were measured with rotameters 
which had previously been calibrated for the appro- 
priate gas mixture using accurate bubble meters. Tbe 
outlet flow rates from each compartment were always 
found to be identical to the inlet rates, indicating that 
there is no net gas flow through the paper, as would be 
expected since the molecular weights of nitrogen and 
carbon monoxide are equal. The steady state mixing- 
cup concentrations in the exit gas streams were 
reached in less than half a second. 

FORMULATION OF THE MATHEMATICAL MODEL 

The x- and z-co-ordinate axes are as shown in Fig. 1, 
the y-axis (not shown) lies perpendicular to these axes. 
The cell contains three regions of interest: the lower 

and upper compartments into which pure nitrogen 
and the weak mixture of carbon monoxide and 
nitrogen flow, respectively, and the paper for which the 
diffusion coefficient is sought. 

In the mathematical analysis it is assumed that the 
molecular diffusion coefficients and the total density 
are constant, and that axial diffusion may be neglected. 
Identical flows with volume flow rate V are assumed in 
both compartments, so that there is no net mass flow 
across the paper at any station. The flows are assumed 
steady, laminar and fully developed before the gas 
contacts the paper. Furthermore, the compartments’ 
aspect ratio b/e is sufficiently large to justify the neglect 
of the effect of the side walls (at y = 0 and y = b) on the 
velocity distributions. 

Subject to these assumptions, the governing equa- 
tions for the concentrations ofcarbon monoxide in the 
compartments (c,, c2) and paper (cp) are 

d2Ci SC, 
compartments : D, dZ2 = ui z, i = 1,2 (1) 

paper : a25 
dZ2 

- 0. 

Here the suffices 1,2 and p refer to the upper and lower 
compartments and paper, respectively, and for fully 
developed laminar flow 

u, =s(z-$)(e+k-z) (3) 

and 

u2= -$(z+i)(e+k+z). (4) 
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The boundary conditions at the impermeable surfaces 
2 = +[e + (L/2)] are 

ac, -=0 at z=e+$, 
aZ 

xao (5) 

acz L 
-=0 at z=-e-2, xk0 
az 

(6) 

whilst at the paper we require 

(7) 

i 

L 

D&2Ddc, atz=--i’ x 2 0. (8) 

g az p az 

Finally, at the leading edge of the paper no mass 
transfer has yet taken place and the boundary con- 
ditions are 

L L 
cl = c at x = 0, -_dz< 

2 
r+e (9) 

L 
c,=O at x=0, --az> -4 

2 
- e (10) 

where c is the concentration of carbon monoxide at the 
inlet to the upper compartment. 

It is straightforward to show from equations 
(l)-(10) that the concentrations in the two compart- 
ments are connected by the simple relationship 

cz(x,z) = c - c,(x, -z) (11) 

and that ct(x,z) is fully determined by equations (I), 
(3), (S), (9) together with the condition 

L 
at z = -, 

2 
x >, 0. (12) 

With the change of variables 

8 2c1 c--l 
C 

x _ b&x 
--iFi 

q=i(e+f--P) 

the governing equations become 

a% 
- = ?f(l - q)g a+ 

de 
-=0 atr)=O, XBO 
atl 

de 

atl 
+a6=0 atq=l, X>O 

1 

(13) 

(14) 

(1% 

and 

where 

f?=l atX=O, O<r)<l (16) 

a=2eD,. 
LD, 

(17) 

Solution 

The solution of equation (14) obtained by sep 
aration of variables is 

e = 1 T~P,(~, ~,)e-“:x 
I 

(18) 

where P,(~,I,) and I, are the eigenfunctions and 
eigenvalues of 

e + A:rr(l - q)P, = 0 

subject to the conditions 

P;(O, pi) = 0, PAO, n,) = 1 

and 

(19) 

(20) 

P;(l, 1,) + aPAl, A) = 0 (21) 

where the dashes denote differentiation with respect to 
q. The eigenconstants Ti are obtained by applying the 
initial condition (16) and using orthogonality re- 
lations. Thus, 

s 

1 

~(1 -.vP,hWrl 

T-"l I- 

s 

(22) 

~(1 - v)P:(v,Wrl 
0 

which may be manipulated into a more useful form as 
follows : the numerator may be simplified by integrat- 
ing the differential equation (19) from q 3: 0 to n = 1 to 
obtain 

5 

1 
Ml- tlV’,h Wv = - $P;(lJ,). (23) 

0 I 

Now for the denominator we first introduce the system 

P" + 12n(l - q)P =o (24) 

subject to 

P(0, I) = 0 and P’(0, II) = 0, (25) 

which is the same as the (Pi, &)-system except that the 
eigenvalue equation (21) is dropped. By subtracting 
(24) multiplied by Pi from (19) multiplied by P and 
then integrating the result between r) = 0 and 1, we 
obtain 

I 

1 

~(1 - ~)P,(~,W(~,4dv 
0 

1 
=- 

12 - j_z i 
P;(l,L,)P(l,I)-P(1,1)P,(l,A,) . 

1 1 
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On using (21) this may be written 

Pi(l,&) 
q( 1 - q)PiP dq = - 

a@ + 4) 

X +! P(lJ) - c(i,lJ + a(P(L1) - P,(l,Ai)] 
. - t 

t A - Ai 1 

which on taking the limit as Z + l, yields 

~41 - rlV':h,Wrt 

Finally substituting (23) and (26) into (22) yields 

T- 
-2 

i- 
A aP 

(27) 

t 
i 
$prll) +; $+.,) 

> 

The mixing-cup concentrations cl,,, and Q,,, across any 
section of the upper and lower compartments, re- 
spectively, are given by 

where 

The quantity of practical interest in the diffusion cell is 
the difference in the mixing-cup concentrations i.e. 

wherep = p,,,n = I, 2,3,. . . , are the positive roots of 
the transcendental equation 

p tan CI = a. 

AC,,, = clrn - cz, = ~0,. (29) For a given a, the roots of this equation may be found 

The eigenvalue problem posed by equations by any of the standard root-finding procedures. 

(19 j(21) may be solved by transforming equation (19) 
to WI&taker’s equation, which then may be solved in 
terms of the confluent hypergeometric function. For 
example, reference may be made to [ll, 12, 131 which 
concern a related 3cell liquid diffusion problem that 
has an application to the mass transfer process as- 
sociated with haemodiaiysis. These authors have all 
ultimately resorted to numerical methods to treat the 
eigenvaiue problem. 

RESUL.TS AND DISCUSSION 

In the present investigation we have used a more 
direct approach and have solved the differential equa- 
tion by a Runge-Kutta method together with a 
shooting technique. This was carried out as follows: an 
appro~mation to the eigenvalue 11’) was obtained by 
use of the asymptotic formulae (AS, A$) and a soiution 
to (19) subject to (20) computed by using Gill’s 
modification to the Runge-Kutta technique. An im- 
proved estimate to the eigenvalue was obtained by 

Figures 2 and 3 illustrate typical output that may be 
obtained from the theoretical model. The concen- 
tration profiles at various axial stations in the two 
compartments are shown in Fig. 2 for a representative 
value of a equal to 4. Within the restriction of the 
chosen scale there is no discernible difference in the 
profiles given by the inviscid and viscous models. 
However on plotting graphs of a vs AC& at various 
axial stations (Fig. 3), it is apparent that there is 
considerable variation in the two sets of results for the 
larger values of a. Thus the inviscid model seems to be 
appropriate only for the lower values of z. 

One might use Fig. 3 to determine the diffusion 
coefficient D, for a given paper from a single experi- 
mental observation. However, in order to minirnise 
experimental error, a least squares procedure was 

applying the Newton-Raphson root-finding tech- 
nique tof(J) = P’(1, i) + aP(1,1) = 0; the iteration 
scheme was 

where dP/dl satisfies 

% + A+l(l - q)$ + 2,441 - 9)P = 0 

subject to 

fj$(0,4 = 0, ~(0,;) - 0. 

This improved estimate was used to run off a new 
solution and the iteration continued until convergence 
was obtained. The average time to obtain an eigen- 
value and its corresponding eigenfunction was under 
two seconds on an ICL 2970 computer. 

A further simplification to this problem is to assume 
that the flow is inviscid, so that the flows are uniform 
across the compartments. The resulting problem may 
easily be solved by Laplace transforms and the follow- 
ing results obtained : 

tI= -201 fj 
I=1 

X 
i.4 cos ~(1 - rl) + a sin ~(1 - rl) e_b#ix 

P&Z f a2 + al 
and 

D 

tla 22. 2a2 C 
1 

“= 1 dCc1.2 + a2 + a] 
e-6dx 

’ 
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FIG. 2. Concentration profiles in the upper and lowa compartments for a = 4. 

-__ Inviscid flow 

6 

0 

4- 

2- 

0’ 
I I I I I I I 

01 0.2 0.3 0.5 06 0.7 0.6 

FIG. 3. The dependence of &,,/c on the dim~sioni~s groups K and X, where K = ZeD&.D, and X = 
bD,#We. 
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adopted. In practice N observed values of AC& in the 
exit gas are obtained by varying the experimental 
parameters and the value of D, in the mathematical 
model adjusted so as to minimise 

S = $ ((AC,,&);” - (Ac,,,/~)f”“)~. 
i=l 

Now for a given set of experimental parameters, the 
slope of the graph of a against AC Jc (see Fig. 3) is 
dependent on the value of D, and approaches infinity 
for large values of D,. Consequently, if the experimen- 
tally determined value of AC Jc lies in the neigh- 
bourhood of the steepest section of the graph, any 
small error in the measurements leads to a large error 
in the value of D,. Thus in the determination of D, the 
experimental parameters should be chosen to avoid 
the steep part of the curve. 

In the experiments the compartment breadth was 
fixed at 18 mm, the depths were 4.81,3.22,1.59 mm and 
exposure lengths of 50 and 100mm were normally 
used and occasionally 20,40,60,140 mm. The gas flow 
rates through each compartment were varied between 
300 and 1300cm3 min- l, depending on the paper 
under test. 

To evaluate the results of using the suggested 
procedure to determine D, we have substituted the 
calculated value of D, back into the model and have 
compared experimental and theoretical results. For 
example, Fig. 4 illustrates the effect of varying the 
length of paper exposed to the gas flow on the observed 
values of AC Jc for various gas flow rates. The agree- 
ment is seen to be quite satisfactory. 

0. 

0 

Y 
“’ O 
a 

Values of D, obtained by this method range from 
0.001 to 0.020cm2 s-’ for inherently porous papers 
used on cigarettes and having permeabilities in the 
range 2.0-200 cm min- l (10 cm water)- ’ respectively. 
The diffusion coefficient for diffusion of a binary 
mixture of carbon monoxide and nitrogen through the 
unrestricted gas phase is 0.21 cm2 s-t at room tem- 
perature and pressure [17]. Consequently, it is seen 
that the interlocking network of cellulose fibres in- 
terspersed with chalk particles, which make up the 
structure of cigarette paper, offers a substantial hin- 
drance to gaseous diffusion. This is due to the tortuous 
paths round the cellulose fibres through which the gas 
molecules must diffuse. The values of D, are discussed 
further elsewhere [8]. 
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APPENDIX 

THE nuwrical treatment of the eigenvalue problem 
(19)-(21) it is extremely important that good estimates of the 
eigenvalues are available. The standard techniques for ob- 
taining these estimates are the W.K.B. method and, when the 
differential equation has transition points, the method of 
matched asymptotic expansions [M-16]. Although the es- 
timates thus obtained are strictly onfy vahd asymptoti~Ily, 
they are often surprisingly good even for the leading 
eigenvalues. 

In the present problem there are transition points at u = 0 
and u = 1, and so we must find asymptotic expansions in 
three distinct regions: u rr 0, u = 1 and 0 < n < 1. 

O<u<l 
In this region we may employ the str~ghtfo~ard W.K.B. 

method [14] and obtain 

P, = 1 
Cat1 - w4 

{._cos(At J; J?i--5jdc), 

+ b.sinlk, 7 JG)dr)l +O(a&). (Al) 
t Jo - IJ 

The factor [u(l - rf)] -“* causes this solution to break down 
near u = 0 and u = 1 and therefore these regions must be 
studied separately. The arbitrary constants a,,,, b, will be 
determined by matching. 

The appropriate independent variable near rf = 0 is < = 
$“u and the problem be-comes 

dzPt 
-djT + ((1 - I.;q)P, = 0 

with 

P,(O) = 1 and s(O) = 0. 

To a first approximation in A,, we obtain 

p t- - 3z’6~‘3) {I%(--<) + &Ai(-_C)f + O(,I;Z’3) 

W) 
and in order that (Al) and (AZ) match, we rquire 

b _ (4 - i)I-(Z/3) 3 “6 
I- 

2J21; z ’ 0 

Here Ai and Bi denote Airy functions of the first and second 
kind, respectively. 

unl 
This problem is similar in character to that for u = 0. The 

appropriate scaling is x = I:“( 1 - 9) and we shall take OL = 
@‘a?, where 6 is O(l), in order to cover both the cases OL -+ 0 
and u + m. The go&rning equation becomes 

d’P, 
- + x( 1 
dz2 

- 1; 2’3X)P< 9: 0 

with 

dpt 
--aiP,=O at x=0, 
dz 

Again to a first approximation in d, we obtain 

P, = b,{Bi(-X) - pAi(- + 0(1;2’3b,) 

where 

(A3) 

8=& 
I 

a’ I-(l/3) + 3”3 I-(2/3) 

a’I-(l/3) - 3’” F(2/3) I ’ 

On matching (A2) and (A3) we obtain the asymptotic 
expansion for 1, 

;(,-gi-~+atan-‘(l/8)+O(i-‘“) (A4) 

and the constant b, 

b. =(-I)‘** 3rmr(2/3)3)fl + pz}-i’z 

where i is a large positive integer. 
Thus for moderate values of a (let oi -+ 0) we may use 

&==Si-$, i= i&&3,... WI 

as an estimate for the eigenvalues, whilst when a is very large 
(let oi + w) 

A,=Si-4, i= 1,2,3 ,... (A6) 

serves as a good estimate. Strictly speaking, the estimates 
(AS), (A6) relate to the cases of zero mass flux and constant 
concentration at the paper, respectively. 

UNE CELLULE DE MESURE DU COEFFICIENT DE DIFFUSION DES GA2 
A TRAVERS DES FEUILLES DE PAPIER A CIGARETTE 

R&urn6 - Une cellule est construite pour mesurer le coefficient de diffusion moliculaire du monoxyde de 
carbone dans un melange monoxyde de carbone/axote, it travers un papier a cigarette. La cellule et son 
utili~t~on sont d&rites brievement et le modele math~madque est pr&sente. La thlorie permet d’atteindre le 

coefficient de diffusion cherche, a partir des mesures des concentrations. 
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EINE ZELLE ZUR MESSUNG DES DIFFUSIONSKOEFFIZIENTEN 
VON GASEN DURCH ZIGARETTENPAPIERE 

Zussmmenfassung - Es wurde eine Diffusions&e zur Messung des molekulareu Diff~io~koe~enten von 
Kohlenmonoxid in einer Kohlenmonoxid-Stickstoff-Mischung durch Zigarettenpapier hergesteilt. Die Zelie 
und ihre Anwendung werden kurz beschrieben und die zugehiirigen mathematischen Zusammenhiinge 
dargelegt. Die Theorie ermiiglicht die Bestimmung des gesuchten Diffusionskoeffizienten aus Messungen der 

Konzentrationen in der Austritrsmischkammer. 

)I’4E$iKA ,QJlX M3MEPEHMII K03@@MUMEHTOB AMWPY3MM I-A30B 
rlEPE3 I-IAI-I MPOCHYK) 6YMAl-Y 

Asmo-raum~ - PaspatioTaHa n~~y3nonHaa ’ nqeiixa ~UIII a3Mepexsia xo~~~~eHTa ~one~y~apHo~ 
~HI&&WH OK~~H yrnepona a c~ecsf 0xHcb yrm?pOAa-a3OT sepe3 nanxpocnyto ByMary. Aan0 xpaTicoe 
onHcaHHe RqeRxH a d npm.feiteHne. Pasmisaewan B pa6oTe MaTeMaTHWcKal( TeopHn no38onaeT 

~CCWTaTb K03t$~HUHeHT AH+$)WiH I-IO MHHblM H3Me~HHSi KOHlWtT~UHii Ha BLvIXOAe. 


